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Abstract
Quantum fluctuations of massless scalar fields represented by quantum
fluctuations of the quasiparticle vacuum in a zero-temperature dilute Bose–
Einstein condensate may well provide the first experimental arena for measuring
the Casimir force of a field other than the electromagnetic field. This would
constitute a real Casimir force measurement—due to quantum fluctuations—in
contrast to thermal fluctuation effects. We develop a multidimensional cut-off
technique for calculating the Casimir energy of massless scalar fields in d-
dimensional rectangular spaces with q large dimensions and d − q dimensions
of length L and generalize the technique to arbitrary lengths. We explicitly
evaluate the multidimensional remainder and express it in a form that converges
exponentially fast. Together with the compact analytical formulae we derive,
the numerical results are exact and easy to obtain. Most importantly, we show
that the division between analytical and remainder is not arbitrary but has
a natural physical interpretation. The analytical part can be viewed as the
sum of individual parallel plate energies and the remainder as an interaction
energy. In a separate procedure, via results from number theory, we express
some odd-dimensional homogeneous Epstein zeta functions as products of one-
dimensional sums plus a tiny remainder and calculate from them the Casimir
energy via zeta function regularization.

PACS number: 11.10.Kk

1. Introduction

The Casimir force remained for a long time one of the most esoteric forces in physics
attracting at best some theoretical interest. All of this has changed in the last eight years
or so. After nearly 50 years since its prediction in 1948 by Casimir [1], the force has now
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been successfully measured by a modern series of experiments starting with Lamoreaux’s
1997 landmark experiment [3] with a torsion pendulum which reduced errors dramatically
compared to the early 1958 experiment by Spaarnay [2]. The force was subsequently measured
more precisely in 1998 using an atomic force microscope [4] and the measurements agreed
with theoretical predictions to within 1% after finite conductivity, roughness and temperature
corrections were taken into account. Thus the modern era of precise Casimir measurements
was born and a non-exhaustive list of other experimental studies since then can be found in
[5–13]. Interest in the Casimir force has also been fuelled by theories with large extra
dimensions which predict among other things a deviation from Newtonian gravitation at the
sub-millimetre scale [14]. To date no deviation has been found. Recently, a Casimir force
experiment [15] has placed new constraints on the parameters of such proposed theories.
An up-to-date list of gravitational experiments can also be found in [15]. As with many
fundamental physics discoveries, at first the Casimir force seemed to have no apparent
engineering application (since it is significant only on micron or submicron scales). However,
our ever increasing ability to build structures on smaller scales has made the Casimir force
something various industries need to take into account. For example, in 2001, scientists at
Lucent Technologies showed that the Casimir force could be used to control the mechanical
motion of a microelectromechanical system (MEMS) device [17] (see also the recent paper
[16] and references therein). MEMS are micron-sized devices in which tiny sensors and
actuators are carved into a silicon substrate and are currently in use as car air-bag sensors. For
more details on the Casimir effect the reader is referred to the following books [28, 29] and
reviews [30–33].

All the measurements of the Casimir force to date have been limited to the case of
the electromagnetic field. However, experiments may soon (or may already have done so
indirectly) measure the Casimir force for a massless scalar field. Quantum fluctuations of the
quasiparticle vacuum in a zero-temperature dilute Bose–Einstein condensate (BEC) should
give rise to a measurable Casimir force as explained in recent papers [18, 19]. The authors
in [18, 19] state that indirect effects from these quantum fluctuations may have already been
observed [20–22, 27]. Note that this is a real Casimir effect due to quantum fluctuations
in contrast to thermal fluctuations (often called pseudo-Casimir). The fact that the field
propagates at the speed of sound in the BEC medium in contrast to the speed of light
in Minkowski spacetime does not change anything fundamental in relation to the Casimir
energy. If the speed of propagation is constant in a given medium, the Casimir energy in units
of this speed will be the same value regardless of whether the medium is spacetime or a BEC.
Moreover, a generally covariant action analogous to what we see in general relativity exists for
scalar fields propagating in a particular fluid. The Lagrangian is similar to that of a massless
Klein–Gordon field with the Minkowski metric ηµν of spacetime replaced by an effective or
acoustic metric gµν [34]. Quoting directly from [35], ‘at low momenta linearized excitations of
the phase of the condensate wavefunction obey a (3+1)-dimensional d’Alembertian equation
coupling to a (3+1)-dimensional Lorentzian-signature “effective metric” that is generic, and
depends algebraically on the background field’. In [19] the authors make the important
observation that though the dispersion relation for quantum fluctuations in a BEC is nonlinear,
the Casimir energy picks out mostly the long wavelength linear behaviour. This is why the
Casimir force FBEC calculated by the same authors [18, 19] for infinitely thin and infinitely
repulsive plates immersed in a zero-temperature three-dimensional dilute condensate turns out
to leading order to be the same as that of a massless scalar field moving with the speed of
sound v.

In this paper, we are interested in the Casimir effect of massless scalar fields travelling
with speed v in rectangular cavities of d spatial dimensions where q dimensions are large and
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d − q dimensions are of equal length L. The case of arbitrary lengths is also considered in
appendix B. We develop a multidimensional cut-off technique to solve this problem. Why
use a cut-off technique? Clearly, it is less efficient than the zeta function technique that yields
quickly, via analytic continuation, finite results for rectangular cavities in terms of Epstein zeta
functions. There are a few reasons for the importance of the exponential cut-off technique.
First, it remains the most physically intuitive method. For this reason, recent texts in string
theory or quantum field theory (QFT) as well as courses in QFT introduce the standard Casimir
energy calculation of a string or parallel plates using an exponential cut-off. For example, in
the text String Theory, vol I [23], the Casimir energy for the Bosonic string is handled with
an exponential cut-off. The result

∑∞
n=1 n → −1

12 is obtained by replacing n by n e−λn and
extracting the finite result −1

12 from the series 1
λ2 − 1

12 + O(λ2). This cut-off method was used
instead of the zeta function technique which yields quickly ζ(−1) = −1

12 . In his recent book,
quantum field theory in a nutshell [24], Zee brings in some humour in explaining a physicist’s
perspective on the same sum. I quote from p 66, ‘Aagh! What do we do with

∑∞
n=1 n? None

of the ancient Greeks from Zeno on could tell us. What they should tell us is that we are doing
Physics . . . Physical plates cannot keep arbitrarily high frequencies from leaking out’. He then
introduces the exponential cut-off to damp the ultraviolet frequencies. In the classic QFT text
by Itzykson and Zuber [25] the electromagnetic parallel plate problem in three dimensions is
solved via a cut-off function and the Euler–Maclaurin formula and the same technique can be
seen applied in recent graduate courses (e.g. see ‘Relativistic Quantum Field Theory I, Spring
2003’ [26]). Physicists are therefore likely to be familiar with the cut-off technique. Secondly,
a multidimensional cut-off calculation with an exact determination of the multidimensional
remainder term does not seem to have been systematically carried out for rectangular cavities
in arbitrary d dimensions. Papers on Casimir energies in arbitrary d dimensions in rectangular
cavities have made use of dimensional and zeta function regularization [42–44]. Explicit
formulae using the exponential cut-off technique in rectangular cavities include parallel plates
in higher dimensions [36], rectangular cavities in two and three dimensions [37–40] and
explicit formulae via Poisson’s formula up to d = 2 appear in [41]. In [36, 37, 41] the
connection between cut-off and zeta function technique is also elaborated and explained. A
detailed numerical analysis for the electromagnetic case in three-dimensional rectangular
cavities can be found in [45]. Last but not least, by applying the cut-off technique to
rectangular cavities we are led in a natural fashion to excellent finite analytical formulae plus
a remainder. We show that the division between analytical and remainder is not some ad hoc
division. The analytical part has a clear physical interpretation as sums of parallel plates out of
which the rectangular cavity is constructed. Moreover, the numerical results are excellent
because the analytical part is trivial to evaluate and the multidimensional remainder is derived
in a form that converges quickly (exponentially fast). As already mentioned, the zeta function
technique applied to rectangular spaces has the great advantage of leading quickly to finite
results expressed in terms of Epstein zeta functions. However, one then needs to go a few
steps further if one wants to express these in a convenient analytical form and this is usually
a separate procedure. In contrast, analytical results are often a natural spin-off of the cut-off
technique.

One section of this paper is devoted to developing a technique that derives highly accurate
analytical formulae for a few odd-dimensional homogeneous Epstein zeta functions. It
turns out that in even dimensions less than or equal to 8 one can obtain compact analytical
expressions for the homogeneous Epstein zeta function purely in terms of products of one-
dimensional sums. There is no remainder for these cases. This can be accomplished
via number theoretic formulae for the representation of integers as a sum of squares in
even dimensions. For even dimensions above 8, the number theoretic formulae get more
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complicated and in odd dimensions above 7 they are not presently known. For 3, 5 and 7
dimensions, the number theoretic formulae have only recently been found [50] but they are
much more complicated than in even dimensions. We therefore develop a procedure that uses
the exact even-dimensional results from number theory and then apply the Euler–Maclaurin
formula to obtain the odd dimensions. This yields the homogeneous Epstein zeta function
in 3, 5 and 7 dimensions as a finite number of products of one-dimensional sums plus a
small remainder term. This remainder is even smaller than the remainder obtained via our
multidimensional cut-off technique. For the most important case of 3 dimensions, we obtain
both a highly compact and extremely accurate analytical expression that contains only four
terms and where the remainder is a negligible 0.04% of the Casimir energy. Our specific
procedure leads to low remainders but is limited to a few homogeneous Epstein zeta functions,
albeit one that includes the three-dimensional case. A different more general procedure
applicable to any multidimensional inhomogeneous Epstein-type zeta function can be found
in [46].

2. Multidimensional cut-off technique including remainder

In this section, we develop a multidimensional cut-off technique to obtain formulae for the
Casimir energy of a massless scalar field φ(x) moving with a wave velocity v in a d-dimensional
rectangular cavity with d−q sides of equal length L and q sides of much larger length Lm � L

where m runs from 1 to q. One can generalize our method to arbitrary lengths and this is done
in appendix B. Here and throughout the paper we consider the more special case as it makes
the method, the formulae and the physical interpretation more transparent. This section and
appendix A (where the remainder is evaluated) go together.

We consider periodic, Neumann and Dirichlet boundary conditions. The fields are
assumed to propagate in a homogeneous medium with a constant speed v and with a wavelength
long enough that the dispersion relation is linear, i.e. ω = vk where k is the wave number. In
other words, we assume the scalar field φ(x) to obey the standard linear wave equation:

∂2φ(x)

∂2t
− v2∇2φ(x) = 0. (1)

The boundary conditions are either periodic, φ(xi = 0) = φ(xi = L), Neumann, ∂iφ(x) = 0
at xi = 0 and xi = L or Dirichlet φ(xi = 0) = φ(xi = L) = 0. Here i runs from 1 to d − q

inclusively. After the standard Fourier decomposition one obtains the following quantized
frequencies ω for periodic (p), Neumann (N) and Dirichlet (D) conditions:

ωp = 2πv

(
n2

1

L2
+ · · · +

n2
d−q

L2
+

n2
d−q+1

L2
1

+ · · · +
n2

d

L2
q

)1/2

ωN,D = πv

(
n2

1

L2
+ · · · +

n2
d−q

L2
+

n2
d−q+1

L2
1

+ · · · +
n2

d

L2
q

)1/2

,

(2)

where ni’s run from −∞ to ∞ for periodic boundary conditions, 0 to ∞ for Neumann and 1
to ∞ for Dirichlet. From quantum field theory, we know that after quantization the vacuum
energy is given by the sum over all modes of 1

2ω (we work in units where h̄ = 1). The vacuum
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energies Evac for the three boundary conditions labelled (p, N, D) are therefore,

Evac
p = πv

L

∞∑
ni=−∞
i=1,...,d

(
n2

1 + · · · + n2
d−q +

n2
d−q+1L

2

L2
1

+ · · · +
n2

dL
2

L2
q

)1/2

,

Evac
N,D = πv

2L

∞∑
ni=0,1

i=1,...,d

(
n2

1 + · · · + n2
d−q +

n2
d−q+1L

2

L2
1

+ · · · +
n2

dL
2

L2
q

)1/2

.

(3)

The above sums are ultraviolet divergent and require regularization. There are many
different regularization schemes such as exponential cut-off, zeta function and dimensional
regularization. In this paper, the goal is to develop a multidimensional cut-off technique via the
Euler–Maclaurin formula. Using this technique, we obtain formulae for the Casimir energy
as a finite sum over analytical terms plus a remainder. We fully evaluate the remainder term
and express it as sums over Bessel functions. We later show that the analytical part has an
intuitive physical picture; it is the energy needed to construct the rectangular cavity out of
adding successive parallel plates. We begin by calculating the regularized vacuum energy for
periodic boundary conditions. After regularization, we then extract the finite Casimir energy
Ep which is the difference between the regularized energy with boundaries (discrete modes)
and the regularized energy without boundaries (continuous modes). We later compare Ep

to the Epstein zeta function obtained via zeta function regularization. We can express the
Neumann and Dirichlet energies, EN and ED, in terms of sums over Ep, so only the periodic
case needs to be evaluated fully. The regularized vacuum energy Ereg for periodic boundary
conditions using an exponential cut-off is

Ereg
p (q, λ) = πv

L

∞∑
ni=−∞
i=1,...,d

(
n2

1 + · · · + n2
d−q +

n2
d−q+1L

2

L2
1

+ · · · +
n2

dL
2

L2
q

)1/2

,

exp


−λ

√√√√n2
1 + · · · + n2

d−q +
n2

d−q+1L
2

L2
1

+ · · · +
n2

dL
2

L2
q




= − πv

Lq+1

q∏
i=1

Li∂λ

∞∑
ni=−∞

i=1,...,d−q

∫ ∞

−∞

× exp
(
−λ

√
n2

1 + · · · + n2
d−q + x2

1 + · · · + x2
q

)
dx1 · · · dxq, (4)

where we replaced the sums over the q large dimensions by integration. The parameter λ is
a free parameter which we later set to 0. The goal is to evaluate the expression in (4) that
includes d − q sums and q integrals. Our procedure will be to express (4) as an expansion
over a function 	 and then use the Euler–Maclaurin formula to evaluate this function. Define
the following short-hand form for a (j − q)-dimensional sum over q integrals:

∑j−q
∫ q

≡
∞∑

ni=−∞
i=1,...,j−q

∫ ∞

−∞
exp

(
−λ

√
n2

1 + · · · + n2
j−q + x2

1 + · · · + x2
q

)
dx1 · · · dxq, (5)

where j runs from q to d − 1 (the case j = q corresponds to no sums, only q integrals). The
reader may wonder why we chose a definition with j − q sums instead of just simply j . The
reason is that the total number of sums plus integrals is then j and this simplifies things later on.
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We define a function 	 by adding one more sum to the above definition:

	j(q, λ) ≡
∑′ ∑j−q

∫ q

=
∞∑′

n=−∞

∞∑
ni=−∞

i=1,...,j−q

∫ ∞

−∞
exp

(
−λ

√
n2 + n2

1 + · · · + n2
j−q + x2

1 + · · · + x2
q

)
dx1 · · · dxq,

(6)

where the last sum over n excludes zero. With these definitions, we make the following useful
expansion of (4):

∞∑
ni=−∞

i=1,...,d−q

∫ ∞

−∞
exp

(
−λ

√
n2

1 + · · · + n2
d−q + x2

1 + · · · + x2
q

)
dx1 · · · dxq

=
∫ q

+
∑′ ∫ q

+
∑′ ∑ ∫ q

+
∑′ ∑2

∫ q

+ · · · +
∑′ ∑d−q−1

∫ q

=
∫ q

+
d−1∑
j=q

∑′ ∑j−q
∫ q

=
∫ q

+
d−1∑
j=q

	j (q, λ). (7)

Substituting (7) into (4) yields the regularized Casimir energy

Ereg
p (q, λ) = − πv

Lq+1

q∏
i=1

Li


∂λ

∫ q

+
d−1∑
j=q

∂λ	j (q, λ)


 . (8)

In the above expression, we need to separate the divergent part due to the continuum from
the finite part related to the Casimir energy as λ → 0. The term ∂λ

∫ q contains no sums,
only multiple integrals. It is immediately clear that this term contributes purely a continuum
divergent part as λ → 0 and hence makes no contribution to the finite Casimir energy. We
now need to find an expression for 	j(q, λ) given by (6) and extract the finite part related to
it. To this end, we apply the Euler–Maclaurin formula that converts sums to integrals. The
Euler–Maclaurin formula is given by [51],

∞∑
n=1

f (n) =
∫ ∞

0
f (x) dx − 1

2
f (0) −

s∑
p=1

1

(2p)!
B2pf (2p−1)(0) + Rs, (9)

where f (2p−1)(0) are odd derivatives evaluated at zero and s is a positive integer. The form
above for the Euler–Maclaurin formula assumes that the function f (n) and its derivatives are
zero at infinity. Rs is the remainder term given by [51]

Rs = − 1

(2s)!

∫ 1

0
B2s(x)

∞∑
ν=0

f 2s(x + ν) dx, (10)

where B2s(x) are Bernoulli functions and f 2s(x + ν) are even derivatives of f with respect
to x.

In applying the Euler–Maclaurin formula to determine 	j(q, λ), the function f in question
is the exponential function appearing in (6). Regardless of the value of p, this exponential
function has the property that f 2p−1(0) is zero for all sums in (6) except the last one over n.
A proof of this is given in the appendix of [53]. If f 2p−1(0) is zero for all p it follows that the
sum from p = 1 to s in (9) is zero independent of s. This implies that Rs given by (10) has the
same value for any given s in the case of our exponential function. This is proven explicitly in
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the appendix of [54]. For calculations we can simply choose s equal to 1. Since f 2p−1(0) is
zero for all sums except the last one, the Euler–Maclaurin formula for those sums reduces to

∞∑
n=1

f (n) =
∫ ∞

0
f (x) dx − 1

2
f (0) − 1

2

∫ 1

0
B2(x)

∞∑
ν=0

d2

dx2
f (x + ν) dx, (11)

where B2(x) = x2 − x + 1/6. The function f in (6) has the property f (ni) = f (−ni). The
sum over a given ni can therefore be written as

∞∑
ni=−∞

f (ni) = 2
∞∑

ni=1

f (ni) + f (0)

= 2

(∫ ∞

0
f (x) dx − 1

2
f (0) − 1

2

∫ 1

0
B2(x)

∞∑
ν=0

d2

dx2
f (x + ν) dx

)
+ f (0)

=
∫ ∞

−∞
f (x) dx − R, (12)

where R is a remainder given by

R =
∫ 1

0
B2(x)

∞∑
ν=0

d2

dx2
f (x + ν) dx. (13)

From (12) we see that each sum in (6), except the last one, can be replaced by an integral
minus R. We therefore have the operator prescription

∑ → ∫ −R. Applying the operator
j − q times and then inserting the result in (6) yield

∑j−q =
(∫

−R

)j−q

=
∫ j−q

+
j−q∑
m=1

(−1)m
(

j − q

m

)∫ j−q−m

Rm (14)

and

	j(q, λ) ≡
∑′ ∑j−q

∫ q

=
∑′ ∫ j

+
∑′ j−q∑

m=1

(−1)m
(

j − q

m

) ∫ j−m

Rm

= 2j+1
∞∑

n=1

∫ ∞

0
exp

(
−λ

√
n2 + x2

1 + · · · + x2
j

)
dx1 · · · dxj + Rj(q, λ), (15)

where Rj(q, λ) is a remainder given by

Rj(q, λ) ≡
j−q∑
m=1

∞∑
n=1

(−1)m2

(
j − q

m

) ∫ j−m

Rm. (16)

Substituting R given by (13) into (16) yields

Rj(q, λ) =
j−q∑
m=1

∞∑
n=1

(−1)m
(

j − q

m

)
2j−m+1

∫ ∞

0

∫ 1

0

m∏
i=1

∞∑
νi=0

B2(xi)
∂2

∂xi

exp
(
−λ

√
n2 + (x1 + ν1)2 + · · · + (xm + νm)2 + y2

1 + · · · + y2
j−m

)
dx1 · · · dxm dy1 · · · dyj−m,

(17)

where the integrations from 0 to 1 and 0 to ∞ are over x’s and y’s respectively. The function
	 given by (15) contains two terms. The first term leads to the analytical part and the second
term Rj(q, λ) yields the remainder. In the limit λ = 0, Rj(q, λ) is zero but not its derivative
with respect to λ. It is the derivative with respect to λ that enters into the Casimir energy (8).
There is therefore a nonzero contribution to the Casimir energy coming from the remainder
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term and we fully evaluate it later on. For now, let us evaluate the analytical term in (15).
It can be reduced to an infinite sum over the modified Bessel function K0(λn) which has a
useful series expansion. We first note that the integral in (15) can be expressed in terms of the
modified Bessel function Kj−1

2
(λn) [52]:∫ ∞

0
exp

(−λ

√
n2 + x2

1 + · · · + x2
j

)
dx1 · · · dxj = −2

1−j

2 π
j−1

2
d

dλ

(
Kj−1

2
(λn)

(n

λ

) j−1
2

)
. (18)

The modified Bessel function Kj−1
2

(λn) can be expressed as multiple derivatives of K0(λn)

[52]:

Kj−1
2

(λn)
(n

λ

) j−1
2 = (−1)

1−j

2

( d

λ dλ

) j−1
2

K0(λn). (19)

Substituting (19) and (18) into (15) yields 	j(q, λ) as an infinite sum over the modified Bessel
function K0(λn):

	j(q, λ) = 2
j+3

2 π
j−1

2 (−1)
3−j

2
d

dλ

( d

λ dλ

) j−1
2

∞∑
n=1

K0(λn) + Rj(q, λ). (20)

The infinite sum over the modified Bessel function K0(λn) has the following series expansion
[52]:

∞∑
n=1

K0(λn) = 1

2
{C + ln(λ/4π)} +

π

2λ
+ π

∞∑
m=1

(
1√

λ2 + 4m2π2
− 1

2mπ

)
. (21)

By substituting (21) into (20) we obtain 	j(q, λ) as an analytic expression plus the remainder
Rj(q, λ):

	j(q, λ) = − 1

λj
2jπ

j−1
2 


(
j + 1

2

)
+

1

λj+1
2j+1π

j

2 


(
j + 2

2

)

+ λ2j+2


(
j + 2

2

)
π

j

2 χj (λ) + Rj(q, λ) (22)

where

χj (λ) ≡
∞∑

m=1

1

(λ2 + 4m2π2)
j+2

2

. (23)

To obtain the regularized vacuum energy E
reg
p (q, λ) given by (8) we need to evaluate the

derivative of 	:

∂λ	j (q, λ) = j

λj+1
2jπ

j−1
2 


(
j + 1

2

)
− j + 1

λj+2
2j+1π

j

2 


(
j + 2

2

)

+ 2j+2


(
j + 2

2

)
π

j

2 χj (λ) + λ2j+2


(
j + 2

2

)
π

j

2 ∂λχj (λ) + ∂λRj (q, λ). (24)

We now take the limit as λ → 0 in (24). Note that the first two terms in (24) are divergent in
this limit and represent the infinite continuum energy of surface and volume terms respectively.
The Casimir energy is the difference between the discrete and continuum case and therefore
these two terms need to be subtracted out. We therefore define

∂λ	
finite
j (q, λ) = 2j+2


(
j + 2

2

)
π

j

2 χj (λ) + λ2j+2


(
j + 2

2

)
π

j

2 ∂λχj (λ) + ∂λRj (q, λ). (25)

The above terms in the limit λ = 0 are

lim
λ→0

χj (λ) = (2π)−j−2ζ(j + 2), lim
λ→0

∂λχj (λ) = 0 (26)
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and we define Rj(q) as

Rj(q) ≡ lim
λ→0

∂λRj (q, λ). (27)

Substituting (26) and (27) into (25) we obtain the compact form

lim
λ→0

∂λ	
finite
j (q, λ) = 


(
j + 2

2

)
π

−j−4
2 ζ(j + 2) + Rj(q). (28)

Rj(q) is the multidimensional remainder which contributes to the Casimir energy. This is
evaluated in appendix A and the result is

Rj(q) = 1

π

j−q∑
m=1

2m+1

(
j − q

m

) ∞∑
n=1

∞∑
�1,...,m=1

n
j+1

2 Kj+1
2

(
2πn

√
�2

1 + · · · + �2
m

)
(
�2

1 + · · · + �2
m

) j+1
4

. (29)

Note that Rj(q) is zero for j = q. Expression (29) for the remainder is highly convenient.
First, it converges rapidly. The Bessel functions decrease rapidly and therefore only the very
first few numbers in each sum are needed to reach high accuracy. Secondly, clever algorithms
for Bessel functions are well incorporated in many software packages making numerical
computation of the remainder easy and accurate. The finite part of (8) in the limit λ = 0 yields
the Casimir energy for the periodic case:

Ep(q, d) = − πv

Lq+1

q∏
i=1

Li

d−1∑
j=q

lim
λ→0

∂λ	
finite
j (q, λ)

= − πv

Lq+1

q∏
i=1

Li

d−1∑
j=q




(
j + 2

2

)
π

−j−4
2 ζ(j + 2) + Rj(q) (30)

with Rj(q) given by (29). Equation (30) is the Casimir energy of a massless scalar field
moving with velocity v in a d-dimensional rectangular box with periodic boundary conditions
where d − q sides have length L and q sides have much larger lengths. Note the convenient
break-up into two terms: a finite analytical formula over the well-known Riemann zeta and
gamma functions plus a remainder. Since Rj(q) is zero for j = q, the sum for the remainder
starts at j = q + 1 and is therefore nonzero only if d � q + 2, i.e. nonzero only if there are at
least two small dimensions on top of the q large dimensions.

We can now readily express the Casimir energies for the Neumann and Dirichlet cases
as sums over the periodic ones. In (3), the sums for the periodic case start at −∞, while for
Neumann and Dirichlet cases they start at 0 and 1, respectively. We can express the sums from
0 or 1 to ∞ in terms of sums from −∞ to ∞. The functions being summed have the property
f (n) = f (−n). We therefore have the relation

∑∞
0 f (n) = 1

2

∑∞
−∞ f (n) + 1

2f (0) which can
be expressed as an operator

∑∞
0 → 1

2

(∑∞
−∞ +1

)
. Applying the operator d − q times yields

EN(q, d) ≡ πv

2Lq+1

q∏
i=1

Li

∫ ∞

0

( ∞∑
0

)d−q

→ πv

2Lq+1

q∏
i=1

Li

1

2d

∫ ∞

−∞

(
1 +

∞∑
−∞

)d−q

= 2−d−1 πv

Lq+1

q∏
i=1

Li

d−q∑
m=1

(
d − q

m

) ∫ q
( ∞∑

−∞

)m

= 2−d−1
d−q∑
m=1

(
d − q

m

)
Ep(q, q + m). (31)
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Substituting (30) into (31) yields the Neumann Casimir energy:

EN(q, d) = −2−d−1 πv

Lq+1

q∏
i=1

Li

d−1∑
j=q

d−q∑
m=j−q+1

(
d − q

m

)(



(
j + 2

2

)
π

−j−4
2 ζ(j + 2) + Rj(q)

)
.

(32)

For the Dirichlet case,
∑∞

1 f (n) = 1
2

∑∞
−∞ f (n) − 1

2f (0) and we obtain

ED(q, d) = 2−d−1
d−q∑
m=1

(−1)d−q+m

(
d − q

m

)
Ep(q, q + m). (33)

Substituting (30) into (33) yields the Dirichlet Casimir energy:

ED(q, d) = 2−d−1 πv

Lq+1

q∏
i=1

Li

d−1∑
j=q

(−1)d+j

(
d − q − 1

j − q

)(



(
j + 2

2

)
π

−j−4
2 ζ(j + 2) + Rj(q)

)
.

(34)

A special case is that of Dirichlet conditions for parallel plates where all sides except one are
large, i.e. q = d − 1. Rj(q) is then zero and only j = d − 1 is summed:

E||(d) = −2−d−1 πv

Ld

d−1∏
i=1

Li


(
d + 1

2

)
π

−d−3
2 ζ(d + 1). (35)

The Casimir pressure for the parallel plates is then

P||(d) ≡ −∂E||
∂V

= − h̄vd

(2L)d+1



(
d + 1

2

)
π

−d−1
2 ζ(d + 1), (36)

where V is the volume L
∏d−1

i=1 Li of the parallel plates and we have re-inserted h̄. The result
(36) is in agreement with the higher-dimensional parallel plate cut-off calculation of [36] if
we set v and L to unity. For three dimensions we set d = 3 and obtain

P||(3) = − π2

480

h̄v

L4
, (37)

where we used the fact that ζ(4) = π4/90. This result is in agreement with the Casimir
calculation for quantum fluctuations in a dilute Bose–Einstein condensate at zero temperature
that was recently carried out by [18, 19]. As previously mentioned, though the BEC has a
nonlinear dispersion relation the Casimir energy only picks out the low-frequency part since
the higher frequencies act as a continuum. The low-frequency part is linear and the dispersion
relation is equivalent to that of a massless Klein–Gordon field with speed of light replaced by
speed of sound. The pressure in (37) is negative implying attraction and decreases to the fourth
power of the distance as in the electromagnetic case. In fact, the classic electromagnetic result
− π2

240
h̄
L4 for parallel plates can be obtained by multiplying (37) by 2 for two polarizations and

setting v equal to 1 for the speed of light.
Equations (30), (32) and (34) for the Casimir energies contain products of the large

dimensions Li which can be arbitrarily large. It is of more physical interest to obtain the
energy densities ε which depend on L only. Dividing the Casimir energies by the volume
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V = Ld−q
∏q

i=1 Li yields

εp = − πv

Ld+1

d−1∑
j=q




(
j + 2

2

)
π

−j−4
2 ζ(j + 2) + Rj(q)

εN = − πv

(2L)d+1

d−1∑
j=q

d−q∑
m=j−q+1

(
d − q

m

)(



(
j + 2

2

)
π

−j−4
2 ζ(j + 2) + Rj(q)

)

εD = πv

(2L)d+1

d−1∑
j=q

(−1)d+j

(
d − q − 1

j − q

) (



(
j + 2

2

)
π

−j−4
2 ζ(j + 2) + Rj(q)

)
.

(38)

The three equations in (38) are our final results for the periodic, Neumann and Dirichlet Casimir
energy densities for massless scalar fields moving with wave velocity v in a d-dimensional
rectangular cavity where d − q sides have equal length L and q sides have much larger length.
The expressions contain a dominant finite analytical part plus a fast-converging remainder
Rj(q) given by (29). General formulae for arbitrary lengths are obtained in appendix B.

3. Physical interpretation of Casimir energy formulae

The Casimir energy formula (30) for periodic boundary conditions and (32) and (34) for
Neumann and Dirichlet conditions, respectively have a clear physical picture or interpretation.
Excluding the remainder, the formulae can be viewed as the energy needed to set up the
parallel plates from which the rectangular cavity is constructed. For example, consider the
case d = 3 and q = 0 corresponding to a cube (hypertorus for periodic) with sides of length
L. The cube is built out of three sets of parallel plates. In (30) this corresponds to summing the
term 


(
j+2

2

)
π

−j−4
2 ζ(j + 2) for j = 0, 1 and 2. To build the cube, one begins by placing two

plates a distance L apart. This corresponds to j = 2. Adding two more plates corresponds
to j = 1 and the last two plates complete the cube and correspond to j = 0. We now show
mathematically that the Casimir energy is the sum of parallel plate energies plus a remainder.
Consider periodic boundary conditions. The energy for parallel plates defined by letting
q = d − 1 in (30) is

Ep||(d) = −πv

Ld

d−1∏
i=1

Li


(
d + 1

2

)
π

−d−3
2 ζ(d + 1). (39)

Rj(q) is zero for parallel plates and this is why it is not present in (39). The parallel plate
energy in j + 1 dimensions is

Ep||(j + 1) = − πv

Lj+1

j∏
i=1

Li


(
j + 2

2

)
π

−j−4
2 ζ(j + 2). (40)

In (30), j � q. Therefore the first q products in
∏j

i=1 Li are large and the rest are equal to L

so that the above product
∏j

i=1 Li can be replaced by Lj−q
∏q

i=1 Li yielding

Ep||(j + 1) = − πv

Lq+1

q∏
i=1

Li


(
j + 2

2

)
π

−j−4
2 ζ(j + 2). (41)

Substituting (41) into (30) yields:

Ep(q, d) =
d−1∑
j=q

(
Ep||(j + 1) + Rj(q)

)
. (42)
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As can be seen, the Casimir energy in a d-dimensional space with q large dimensions is the
sum of parallel plates immersed in different dimensions plus a remainder. When building the
rectangular cavity out of successive parallel plates, the first parallel plates have d − 1 large
dimensions, the second have d − 2 large dimensions and so on until the last set which has q
large dimensions. In short, the (d − q)-dimensional resonator is the sum of one-dimensional
resonators each immersed in a different dimension ranging from q + 1 to d − 1.

What is the physical interpretation for the remainder? The energies for parallel plates
are by definition those for isolated plates in vacuum. However, to construct the rectangular
cavity, one adds plates to other plates already present. To clarify this difference consider two
scenarios. Scenario I: plates are brought together in vacuum in a two-dimensional space. This
leaves one dimension which is large. Scenario II: consider a three-dimensional space where
there is already a pair of parallel plates. Now add another pair of plates. This leaves one
dimension which is large as in scenario I. The main point is this: the energy in scenario II for
adding the second set of plates is almost but not exactly equal to the energy of the plates in
scenario I. The reason is that in scenario II there is also an interaction energy due to the presence
of the other plates. The remainder term is therefore an ‘interaction’ or potential energy arising
from the nonlinearity of the energy when waves moving along different directions are added.
By interaction energy we do not mean that there is a Feynman diagram where scalar fields
meet at a vertex. That would be a nonlinear theory like λφ4. What we have here is a linear
theory and the waves obey the superposition principle. However, the energy is clearly not
linear. This is reminiscent of what occurs in classical electrodynamics. In vacuum, the theory
is linear and one can add two electric field vectors but the energy itself is not linear since it
is proportional to the square of the electric field. What we usually call the potential energy
between two static charges q1 and q2 is nothing but the interaction energy between the electric
field E1 produced by the first charge and the electric field E2 produced by the second charge.
The energy density is proportional to (E1 + E2)

2 = E2
1 + E2

2 + 2E1 · E2 and the integration
of the cross term 2E1 · E2 over all space yields the well-known potential energy proportional
to q1q2/r where r is the distance between the charges. The remainder term is similarly a
potential energy arising from the nonlinearity of the energy.

We can now make predictions about the behaviour of the remainder for periodic, Neumann
and Dirichlet boundary conditions. We predict the following:

• percentage wise, the periodic case will have the highest remainder, the Dirichlet case the
smallest, and Neumann in between;

• the remainder grows with the space dimension for the periodic and Neumann cases but
actually decreases for the Dirichlet case.

Let us see how we can make such predictions. The Casimir energy is the difference
between discrete and continuum modes. As the frequency increases the discrete approaches
the continuum. Therefore the Casimir energy picks out the low-frequency or low-energy
behaviour. Moreover, the lower the energy, the more nonlinear is the change in energy.
Higher energies are closer to the continuum and changes are more linear. The minimum
energy mode for the periodic and Neumann cases is zero (the case when all ni’s are zero). For
Dirichlet the minimum energy mode occurs when all ni’s are equal to 1. For concreteness let
the space dimension be 5. For periodic and Neumann the smallest nonzero energy state occurs
when one ni is 1 so that one of five slots is filled with 1, e.g. (0, 1, 0, 0, 0) while for Dirichlet
the minimum energy starts at (1, 1, 1, 1, 1). Now add 1 to both cases (creating states with two
1’s like (0, 1, 0, 0, 1) and states like (1, 2, 1, 1, 1)). The percentage change in the energy in
the Dirichlet case will not be large because the energy started off large. The energy changes
almost linearly leading to a small remainder. As the dimension increases, the energy for the
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Dirichlet case starts off even higher and the change is even less. For Dirichlet, we therefore
predict the remainder to be a very small percentage of the energy and that it decreases as
the space dimension grows. In the periodic and Neumann case, the energy starts off low, so
the change is a larger percentage of the initial energy and therefore more nonlinear than in the
Dirichlet case. This effect is greatly accentuated by the fact that are many more low-energy
combinations for the Neumann and periodic case compared to the Dirichlet case. For example,
there are five ways to place 2 in (1, 2, 1, 1, 1) but there are ten ways to arrange the two 1’s
in (0, 1, 0, 0, 1). The remainder will therefore be considerably larger in the Neumann and
periodic cases. Moreover, the remainder for periodic and Neumann cases will grow as the
dimension increases because as the number of zeros increases there are simply more possible
low-energy combinations and this increases the nonlinear effect. Finally, the periodic case has
the largest remainder of all the cases because negative n’s are allowed, so that in our state (0,
1, 0, 0, 1) one can also have combinations with −1 leading to considerably more low-energy
contributions than in the Neumann case. Our numerical results confirm all these trends.

4. Epstein zeta in odd dimensions as products of one-dimensional sums plus remainder

When applied to a rectangular geometry, the zeta function regularization technique via
analytical continuation yields quickly a finite expression for the Casimir energy in terms
of homogeneous Epstein zeta functions. The subtraction of two infinities does not explicitly
appear anywhere in the process. This is a great advantage over the cut-off technique. We
use zeta function regularization here to obtain quickly an expression for the Casimir energy
in terms of Epstein zeta functions for the periodic case. Our main goal however is to express
the homogeneous Epstein zeta function for 3, 5 and 7 dimensions in terms of products of one-
dimensional sums plus a small remainder. Readers interested in getting a deeper understanding
of the zeta regularization technique as well as other techniques such as heat-kernel methods
are referred to the following books [55–57]. A sample of older and more recent articles where
these techniques are applied in various contexts ranging from gravitation to condensed matter
can be found in [58–71]. For the case of rectangular cavities in arbitrary d dimensions, these
techniques have been applied in [42–44].

Though one can compute a finite numerical result, extra work must be done to express
the Epstein zeta function in a compact analytical form. Define the Epstein zeta function
Zd(a1, . . . , ad; s) as

Zd(a1, . . . , ad; s) ≡
∞∑′

ni=−∞
i=1,...,d

[(a1n1)
2 + · · · + (adnd)

2]−s , (43)

where the prime excludes the case where all n’s are zero and absolute convergence requires
Re s > d/2. Our definition differs from the standard one by a factor of 2 in the power, i.e. we
have −s instead of −s/2. This definition is chosen as it simplifies our final expressions. We
focus on the case of the hypercube, where all a’s are equal and can be pulled out of the sum in
(43) (for simplicity we set them to unity). This yields the homogeneous Epstein zeta function
Zd(s). The vacuum energy in d dimensions for periodic boundary conditions is trivial to write
in terms of Zd(s):

Evac
p (0, d) = πv

L

∞∑
ni=−∞
i=1,...,d

(
n2

1 + · · · + n2
d

)1/2

= πv

L
Zd(−1/2). (44)
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Now Zd(−1/2) is formally infinite if (43) is applied in a straightforward fashion. It
therefore requires regularization. The keystone of the zeta regularization technique is analytic
continuation and the existence of a reflection formula. Like the Riemann zeta function, the
Epstein zeta function has an integral representation which yields an analytic continuation
over the entire complex plane except for a pole at s = d/2. The representation leads to the
following functional relation or reflection formula:

π−s
(s)Zd(s) = πs−d/2
(d/2 − s)Zd(d/2 − s). (45)

We therefore obtain that

Zd(−1/2) = −0.5Zd

(
d + 1

2

)



(
d + 1

2

)
π

−3−d
2 (46)

and (44) reduces to the Casimir energy

Ep(0, d) = −πv

2L
Zd

(
d + 1

2

)



(
d + 1

2

)
π

−3−d
2 . (47)

Clearly, the Casimir energy is finite since Zd

(
d+1

2

)
converges. The reader should appreciate

just how quickly the zeta function technique yields this result.
The homogeneous Epstein zeta function Zd(s) can be expressed in terms of sums over

the arithmetical function rd(n) which is the number of representations of an integer n as a sum
of d squares without regard to sign or order:

Zd(s) ≡
∞∑′

ni=−∞
i=1,...,d

[
n2

1 + · · · + n2
d

]−s

=
∞∑

n=1

rd(n)

ns
. (48)

We can therefore use results from number theory on rd(n) to obtain directly formulae for
the Epstein zeta function. It turns out that formulae for rd(n) which are not complicated
exist in 2, 4, 6 and 8 dimensions and these can be used to obtain the Epstein zeta function
(48) as products of one-dimensional sums with no remainder. The formula for dimension
1 is trivial (by definition a Riemann zeta function) but formulae for 3, 5 and 7 dimensions
eluded number theorists until a major breakthrough in 2002 when Goro Shimura developed
a systematic way of finding formulae for rd(n) for values of d up to 8 [50]. Unfortunately,
the odd-dimensional formulae are much more complicated than the even ones. However,
one can develop a technique where one obtains excellent analytical expressions plus a small
remainder for Z3(s), Z5(s) and Z7(s). This technique makes use of number theory results in
2, 4, 6 and 8 dimensions and the Euler–Maclaurin formula to fill in the odd-dimensional gaps.
The remainder which is explicitly evaluated turns out small because the odd cases are derived
to a large part from the even cases. The most important case is of course Z3

(− 1
2

)
since it

relates to the realistic three-dimensional Casimir energy. We obtain a nice compact analytical
expression for Z3(s). The analytical part is so accurate that it yields the correct Casimir energy
to within a remarkable 0.04% as compared to 1.6% from our cut-off formulae.

We start by stating the number-theoretic formulae for r2(n), r4(n), r6(n) and r8(n) and the
known exact expressions for Z1, Z2, Z4, Z6 and Z8 obtained from them via (48). We illustrate
how to obtain Zd(s) via the number-theoretic formulae for rd(n), something that may not be
too familiar to many physicists. We choose d = 6 as the example to illustrate as it fills a gap
in the table quoted in [42] which contains Z1, Z2, Z4 and Z8 but not Z6. We then develop the
mathematical technique by which we obtain the odd-dimensional homogeneous Epstein zeta
functions.
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4.1. Exact expressions for even-dimensional Epstein zeta function via rd(n)

As mentioned already, the arithmetical function rd(n) is the number of representations of an
integer n as the sum of d squares without regard to order or sign. The formulae for rd(n) for
d = 2, 4, 6 and 8 are known and given by (a good history with references can be found in
[72])

r2(n) = 4
∑
d|n

χ(d) r4(n) = 8
∑
d|n
4|� d

d

r6(n) = 16
∑
d|n

χ(d ′)d2 − 4
∑
d|n

χ(d)d2 r8(n) = 16
∑
d|n

(−1)n+dd3
(49)

where d ′ = n/d and χ(d) is the primitive Dirichlet character modulo 4 given by χ(d) = 0 if
d is even and χ(d) = (−1)

d−1
2 if d is odd. We now evaluate Zd(s) for d = 6

Z6(s) =
∞∑

n=1

r6(n)

ns

= 16
∑

d ′=odd

∞∑
d=1

(−1)
d′−1

2 d2

(d ′d)s
− 4

∑
d=odd

∞∑
p=1

(−1)
d−1

2 d2

(dp)s

= 16
∞∑

m=0

∞∑
d=1

(−1)m

(2m + 1)sds−2
− 4

∞∑
m=0

∞∑
p=1

(−1)m

(2m + 1)s−2ps

= 16
∞∑

m=0

(−1)m

(2m + 1)s

∞∑
d=1

1

ds−2
− 4

∞∑
m=0

(−1)m

(2m + 1)s−2

∞∑
p=1

1

ps

= 16β(s)ζ(s − 2) − 4β(s − 2)ζ(s), (50)

where β(s) and ζ(s) are the Dirichlet beta and Riemann zeta functions, respectively defined
by β(s) ≡ ∑∞

n=0(−1)n/(2n+ 1)s and ζ(s) ≡ ∑∞
n=1 1/ns . We have illustrated how knowledge

of the arithmetical function r6(n) leads to an exact and simple representation for the Epstein
zeta function Z6(n) as a product of the one-dimensional sums β(s) and ζ(s). The other
Epstein zeta functions can be obtained in a similar fashion. We state them below together with
Z6(s) [49]:

Z1(s) = 2ζ(2s), Z2(s) = 4ζ(s)β(s)

Z4(s) = 8ζ(s)ζ(s − 1)(1 − 41−s)

Z6(s) = 16β(s)ζ(s − 2) − 4β(s − 2)ζ(s)

Z8(s) = 16ζ(s)ζ(s − 3)(1 − 21−s + 42−s).

(51)

4.2. Analytical expressions for Epstein zeta function Zd(s) in 3, 5 and 7 dimensions

As already mentioned, the formulae for rd(n) for d = 3, 5 and 7 are much more complicated
than the even ones and it is not easy to use them to obtain analytical formulae for Z3, Z5 and
Z7. We therefore develop a separate technique to find such expressions. The Epstein zeta
function Zd(s) defined in (48) contains d sums which begin at −∞. It is convenient to define
another function Pk(s) as k sums which start at 1:

Pk(s) ≡
∞∑

ni=1
i=1,...,k

[
n2

1 + · · · + n2
k

]−s
. (52)
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We can express Pk(s) as sums over Zm(s):

Pk(s) =
k∑

m=1

(−1)m+k2−k

(
k

m

)
Zm(s). (53)

Similarly, we can express Zd(s) as sums over Pk(s):

Zd(s) =
d∑

k=1

(
d

k

)
2kPk(s). (54)

It is instructive to map out the main idea or process behind the technique we will use. Consider
the example of wanting to find expressions for Z3. From (54), you would need to know P1, P2

and P3. You can find P1 and P2 from (53) since analytical expressions for Z1 and Z2 are
known. However, you do not know P3. At this point, you use the Euler–Maclaurin formula to
express P3 in terms of P2 plus a remainder. Again, you know P2 in terms of Z1 and Z2, so that
you can finally express Z3 in terms of Z1, Z2 and a remainder and hence as an analytical part
plus a remainder. The process can be continued to find expressions for Z5 and Z7 (and even Z9

if one wants to but the expression becomes cumbersome). We now develop the mathematical
technique and obtain our main equation. Zd(s) given by (54) can be expanded as

Zd(s) =
d−1∑
k=1

(
d

k

)
2kPk(s) + 2dPd(s)

=
d−1∑
k=1

(−1)d+k+1

(
d

k

)
Zk(s) + 2dPd(s), (55)

where (53) was used. We now express Pd(s) in terms of Pd−1(s) plus a remainder via the
Euler–Maclaurin formula (9):

Pd(s) =
∞∑

ni=1
i=1,...,d

[
n2

1 + · · · + n2
d

]−s =
∞∑

ni=1
i=1,...,d−1

∫ ∞

0

dx

(x2 + n2)s
− 1

2n2s

− 1

2

∞∑
ν=0

∫ 1

0
B2(x)

∂2

∂x2

1

((x + ν)2 + n2)s
dx, (56)

where

n2 ≡ n2
1 + · · · + n2

d−1. (57)

The first integral in (56) can readily be evaluated:∫ ∞

0

dx

(x2 + n2)s
= 1

n2s−1



(
s − 1

2

)

(s)

√
π

2
= α(s)

2

1

n2s−1
, (58)

where α(s) is defined by

α(s) ≡
√

π

(
s − 1

2

)

(s)

. (59)

Inserting (58) into (56) yields

Pd(s) =
∞∑

ni=1
i=1,...,d−1

α(s)

2n2s−1
− 1

2n2s
− 1

2

∞∑
ν=0

∫ 1

0
B2(x)

∂2

∂x2

1

((x + ν)2 + n2)s
dx. (60)



Cut-off technique, odd-dimensional Epstein zeta functions and Casimir energy 701

By definition

∞∑
ni=1

i=1,...,d−1

1

n2s
= Pd−1(s).

Therefore

Pd(s) = α(s)

2
Pd−1

(
s − 1

2

)
− 1

2
Pd−1(s) + Rd(s) (61)

where Rd(s) is the remainder defined by

Rd(s) ≡
∞∑

n1,...,nd−1=1

−1

2

∞∑
ν=0

∫ 1

0
B2(x)

∂2

∂x2

1

((x + ν)2 + n2)s
dx. (62)

The remainder Rd(s) is worked out in appendix C and the result is

Rd(s) =
∞∑

n1,...,nd−1=1

∞∑
�=1

2√
π

(
π�

n

)s−1/2


(1 − s) sin(πs)Ks−1/2(2π�n), (63)

where n is given by (57). We now evaluate the term 2dPd(s) occurring in (55) via (61)
and (53):

2dPd(s) = 2d−1α(s)Pd−1
(
s − 1

2

) − 2d−1Pd−1(s) + 2dRd(s)

=
d−1∑
m=1

(−1)d+m−1

(
d − 1

m

) [
α(s)Zm

(
s − 1

2

) − Zm(s)
]

+ 2dRd(s). (64)

Substituting (64) into (55) we obtain our main equation:

Zd(s) =
d−1∑
m=1

(−1)d+m−1

[
α(s)

(
d − 1

m

)
Zm

(
s − 1

2

)
+

(
d − 1

m − 1

)
Zm(s)

]
+ 2dRd(s), (65)

where Rd(s) is the remainder given by (63). Equation (65) expresses Zd as sums over Zi’s
from 1 to d − 1 plus a remainder. We are now in a position to obtain expressions for Z3, Z5

and Z7 as products of one-dimensional sums plus a remainder by using our main equation (65)
together with the analytical expressions for Z1, Z2, Z4, Z6 and Z8 given in (51). We begin
with Z3(s). Applying equation (65) yields

Z3(s) = α(s)
[ − 2Z1

(
s − 1

2

)
+ Z2

(
s − 1

2

)] − Z1(s) + 2Z2(s) + 23R3(s). (66)

We now substitute the analytical expressions for Z1 and Z2 given in (51) and obtain our final
expression for Z3:

Z3(s) = 4α(s)ζ
(
s − 1

2

)
β
(
s − 1

2

) − 4α(s)ζ(2s − 1) + 8ζ(s)β(s) − 2ζ(2s) + 8R3(s). (67)

This is a compact analytical result for the important three-dimensional case. The only
remainder is 8R3(s) and the rest includes four analytical terms, each expressed in terms
of simple one-dimensional sums and gamma functions. Later we will see that the analytical
part yields numerically the correct Casimir energy to within 0.04%. We now evaluate Z5(s).
Using again the main equation (65) we obtain

Z5(s) = α(s)
[−4Z1

(
s − 1

2

)
+ 6Z2

(
s − 1

2

) − 4Z3
(
s − 1

2

)
+ Z4

(
s − 1

2

)]
−Z1(s) + 4Z2(s) − 6Z3(s) + 4Z4(s) + 25R5(s). (68)
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Substituting the analytical expressions for Z1, Z2 and Z4 given in (51) and Z3 from (67) into
(68) one obtains the final expression for Z5(s):

Z5(s) = 10ζ(2s) − 32ζ(s)β(s) + 32ζ(s)ζ(s − 1)(1 − 41−s)

+ 8α(s)
[
3ζ(2s − 1) − 4ζ

(
s − 1

2

)
β
(
s − 1

2

)
+ ζ(s)ζ

(
s − 3

2

)
(1 − 23−2s)

]
− 16α(s)α

(
s − 1

2

)(
ζ(s − 1)β(s − 1) − ζ(2s − 2)

)
+ RZ5(s), (69)

where the remainder RZ5(s) = −32α(s)R3
(
s − 1

2

) − 48R3(s) + 32R5(s). The expression for
Z7(s) is

Z7(s) = α(s)
[−6Z1

(
s − 1

2

)
+ 15Z2

(
s − 1

2

) − 20Z3
(
s − 1

2

)
+ 15Z4

(
s − 1

2

) − 6Z5
(
s − 1

2

)
+ Z6

(
s − 1

2

)] − Z1(s) + 6Z2(s)

− 15Z3(s) + 20Z4(s) − 15Z5(s) + 6Z6(s) + 27R7(s) (70)

where Z1, Z2, Z4 and Z6 are given by (51), Z3 by (67) and Z5 by (69). It would be cumbersome
to write out the analytical terms for Z7 as we did for Z3 and Z5. For calculations, one simply
evaluates the necessary Z’s and substitutes them in (70). This ends our results for the odd-
dimensional Epstein zeta functions. One could have continued and obtained expressions for
Z9(s) but this is no longer interesting as the expressions become way too long. We now state
and discuss the numerical results for the Casimir energy.

5. Numerical results and discussion

Table 1 contains the numerical results for the Casimir energy density for periodic (εp),
Dirichlet (εD) and Neumann (εN) for q large dimensions and d − q dimensions of equal
length L. This is calculated using the formulae in (38) and equation (29) for the remainder
Rj(q) (v and L are assumed to be unity). We state the analytical and remainder contribution
separately and calculate their sum to obtain the Casimir energy density. For dimensions up
to d = 5, we include all values of q. For higher dimensions up to d = 10 we only state
q = 0. For numerical results in the case where one has arbitrary lengths the reader is referred
to [43–45]. The formulae derived in appendix B are actually very well suited for such a
numerical study but length limitations restrict us here.

Table 1 shows that the absolute value of the Casimir energy density for the periodic case
is the largest, followed by the Neumann and Dirichlet. Note that the sign in the Dirichlet case
alternates in two fashions: for a given q, it alternates as the dimension d changes and it also
alternates as q changes for a given d. The Casimir energy densities agree with a few exceptions
with results obtained by computing the Epstein zeta function and quoted in the table in [42].
For periodic boundary conditions, results for d = p (corresponding to q = 0 in our case) are
close to our values but do not fully agree. For d = 2 the values agree but for d = 3 they obtain
−0.81 while we obtain −0.838. For d = 4, they obtain −0.85 while we obtain −0.932 and for
d = 5 they obtain −0.95 while we obtain −1.022. Which values are correct? Table 3 contains
an independent determination of the Casimir energy density for the case q = 0 for periodic
boundary conditions. The values in table 3 for d = 3, 4 and 5 are −0.837 537,−0.932 077
and −1.022 83, respectively, and these values are in agreement with our results. Therefore,
in the few places where our results differ from [42], our numerical values can be considered
correct. Some numerical results are also quoted for Dirichlet boundary conditions in [43, 44]
where Epstein zeta functions were also used. In [43], the column u = 0 corresponds to our
q = 0 and are in agreement. In [44] where D is the spacetime dimension, i.e. D = d + 1, their
first column corresponds to our d − q = 2 results and are in agreement.
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Table 1. Analytical and remainder contributions to Casimir energy density for periodic, Dirichlet and Neumann boundary conditions.

Periodic Dirichlet Neumann

(q, d) εp Analytical Remainder εD Analytical Remainder εN Analytical Remainder

0, 2 −0.718 873 −0.714 9121 −0.003 9607 0.041 041 0.041 5357 −0.000 4951 −0.220 759 −0.220 2637 −0.000 4951
1, 2 −0.191 313 −0.191 3133 0 −0.023 914 −0.023 9142 0 −0.023 914 −0.023 9142 0
0, 3 −0.837 537 −0.824 5743 −0.012 9625 −0.015 732 −0.015 6650 −0.000 0675 −0.285 309 −0.283 7567 −0.001 5528
1, 3 −0.305 322 −0.300 9756 −0.004 3463 0.004 832 0.005 1032 −0.002 7164 −0.042 997 −0.042 7251 −0.000 2716
2, 3 −0.109 662 −0.109 6623 0 −0.006 854 −0.006 8539 0 −0.006 854 −0.006 8539 0
0, 4 −0.932 077 −0.903 3714 −0.028 7054 0.006 226 0.006 2453 −0.000 0194 −0.334 058 −0.330 7980 −0.003 2600
1, 4 −0.394 299 −0.379 7726 −0.014 5260 −0.001 634 −0.001 5871 −0.000 0465 −0.058 881 −0.058 0200 −0.000 8614
2, 4 −0.193 407 −0.188 4593 −0.004 9473 0.000 810 0.000 9645 −0.000 1546 −0.012 898 −0.012 7432 −0.000 1546
3, 4 −0.078 797 −0.078 7971 0 −0.002 462 −0.002 4624 0 −0.002 462 −0.002 4624 0
0, 5 −1.022 83 −0.968 9932 −0.053 8395 −0.002 611 −0.002 6055 −0.000 0052 −0.372 895 −0.367 1673 −0.005 7281
1, 5 −0.478 283 −0.445 3944 −0.032 8889 0.000 504 0.000 5171 −0.000 0135 −0.072 698 −0.070 8686 −0.001 8292
2, 5 −0.270 975 −0.254 0811 −0.016 8939 −0.000 308 −0.000 2764 −0.000 0321 −0.018 440 −0.001 7945 −0.000 4959
3, 5 −0.150 257 −0.144 4188 −0.005 8383 0.000 115 0.000 2059 −0.000 0912 −.000 4810 −0.004 7190 −0.000 0912
4, 5 −0.065 622 −0.065 6218 0 −0.001 025 −0.001 0253 0 −0.001 025 −0.001 0253 0
0, 6 −1.122 49 −1.029 970 −0.092 517 0.001 114 0.001 1158 −0.000 0017 −0.405 594 −0.396 4942 −0.009 1000
0, 7 −1.243 13 −1.091 817 −0.151 318 −0.000 489 −0.000 4884 −0.000 0006 −0.434 680 −0.421 1207 −0.013 5591
0, 8 −1.400 15 −1.159 323 −0.240 830 0.000 217 0.000 2170 −0.000 0002 −0.461 950 −0.442 6076 −0.019 3419
0, 9 −1.616 21 −1.237 827 −0.378 385 −0.000 098 −0.000 0977 −0.000 0001 −0.488 792 −0.462 0371 −0.026 7547
0, 10 −1.927 25 −1.334 376 −0.592 8761 0.000 044 0.000 0444 0.000 0000 −0.516 394 −0.480 1973 −0.036 19642
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Table 2. Percentage of Casimir energy which is remainder (case q = 0).

d Dirichlet Neumann Periodic

2 1.2 0.22 0.55
3 0.42 0.54 1.6
4 0.31 0.98 3.1
5 0.20 1.5 5.3
6 0.15 2.2 8.2
7 0.12 3.1 12
8 0.09 4.2 17
9 0.10 5.5 23

10 0.00 7.0 31

Table 3. Epstein-zeta function and comparison of remainder with cut-off.

Epstein zeta % Remainder
Casimir energy

d (q = 0) density (periodic) Analytical Remainder Epstein zeta Cut-off

2 −0.718 873 −0.718 873 0 0 0.6
3 −0.837 537 −0.837 2276 −0.000 3928 0.04 1.6
4 −0.932 077 −0.932 077 0 0 3.1
5 −1.022 83 −1.025 582 0.002 7514 0.3 5.3
6 −1.122 49 −1.122 49 0 0 8.2
7 −1.243 13 −1.197 224 −0.045 9060 3.7 12.2
8 −1.400 15 −1.400 15 0 0 17.2

In table 2, the percentage of the Casimir energy which is a remainder is quoted for the
different boundary conditions as a function of the dimension d (for simplicity, we quote the
hypercube case q = 0 but the same trend is followed by all q values). Table 2 confirms
the predictions made in section 3. Moving down the table, as the dimension increases, the
percentage decreases for Dirichlet but increases for Neumann and periodic as predicted in
section 3. Moving horizontally across the table the percentage is lowest for Dirichlet and
largest for periodic with Neumann in between, again as predicted in section 3 (with the only
exception being d = 2 due to the limited low-energy permutations in the periodic and Neumann
cases and the fact that the Dirichlet starts off at a low energy unlike higher dimensions).

Note how small is the percentage remainder. Only at the highest dimensions is the
percentage high and this is mostly for the periodic case. The percentage remainder is negligible
for the Dirichlet case and the analytical formulae are all we need. The Neumann case has a
very low remainder at low dimensions. At d = 4 it has less than a 1% remainder so that the
analytical formulae are simply excellent at lower dimensions. Even the periodic case at d = 3
has only a 1.6% remainder but the remainder grows rapidly with dimension compared to the
other two cases.

Table 3 contains the Casimir energy for the periodic case at q = 0 for values of d ranging
from 2 to 8 calculated via the expressions for the homogeneous Epstein zeta function Zd(s)

(again v and L are assumed to be unity). Our aim here was not to make a complete table of
Casimir values using the Epstein zeta function. This has already been successfully done in [42].
The goal was mainly to calculate the analytical and remainder terms for the homogeneous
Epstein zeta function in 3, 5 and 7 dimensions. For even dimensions, the expressions are
calculated via (51) where there is no remainder. For the odd cases of 3, 5 and 7 dimensions
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they are calculated via our derived expressions (67), (69) and (70), and (63) for the remainder
Rd(s). Note how close are the derived Epstein zeta analytical results to the actual Casimir
energy and hence the small remainder percentage wise. The analytical expressions (67), (69)
and (70) we derived for the Epstein zeta are limited to a few dimensions but are exceptionally
accurate. As already stated, for the realistic three-dimensional case, the remainder is only a
remarkable 0.04% of the Casimir energy. As one can see, the remainder for these few cases is
smaller than the remainder from our cut-off technique. The reason is due to the fact that the
odd-dimensional cases are derived from the even ones which contain no remainder.
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Appendix A. Remainder term Rj(q)

In this appendix we evaluate the remainder term Rj(q) defined by

Rj(q) ≡ lim
λ→0

∂λRj (q, λ), (A.1)

where Rj(q, λ) is given by (17), i.e.

Rj(q, λ) =
j−q∑
m=1

∞∑
n=1

(−1)m
(

j − q

m

)
2j−m+1

∫ ∞

0

∫ 1

0

m∏
i=1

∞∑
νi=0

B2(xi)
∂2

∂xi

× exp
(
−λ

√
n2 + (x1 + ν1)2 + · · · + (xm + νm)2 + y2

1 + · · · + y2
j−m

)
× dx1 · · · dxm dy1 · · · dyj−m. (A.2)

There are m integrals from 0 to 1 over the x’s and j − m integrals from 0 to ∞ over the y’s.
Our goal is to simplify (A.2) as much as possible and put it in a compact form useful for
computations. At the end, the result is that (A.2) can conveniently be reduced to sums over
Bessel functions. The first step is to convert the multiple integrals over the y’s to a single
integral by using spherical coordinates:

r2 = y2
1 + · · · + y2

j−m; dy1 · · · dyj−m = 2m−j+1 π
j−m

2



(

j−m

2

) rj−m−1 dr. (A.3)

Rj(q, λ) is then reduced to

Rj(q, λ) =
j−q∑
m=1

∞∑
n=1

(−1)m4

(
j − q

m

)
π

j−m

2



(

j−m

2

) ∫ ∞

0

∫ 1

0

m∏
i=1

∞∑
νi=0

B2(xi)
∂2

∂xi

× exp
(
−λ

√
n2 + (x1 + ν1)2 + · · · + (xm + νm)2 + r2

)
dx1 · · · dxmrj−m−1 dr.

(A.4)

We now turn to the x integrals from 0 to 1. Note that x + ν is continuous and runs from 0 to ∞.
It is therefore convenient to drop the sum over ν, replace x + ν by x and integrate from 0 to ∞
instead of 0 to 1. This is valid as long as the Bernoulli function B2(x) is replaced by B2(x−[x])
where [x] is the greatest integer less than or equal to x. This ensures that the Bernoulli function
is periodic with period 1 while x runs to infinity. Moreover, B2(0) = B2(1) so that B2(x − [x])
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is not only periodic but continuous. A Fourier expansion of B2(x) = x2 − x + 1/6 can readily
be obtained and is given by

x2 − x + 1/6 =
∞∑

�=1

cos(2π�x)

�2π2
. (A.5)

The right-hand side of (A.5) is a continuous periodic function valid for all x. It is equal to the
left-hand side only for 0 � x � 1 but equal to B2(x − [x]) over the entire region of integration
0 � x < ∞. We can therefore make the following replacement:

∞∑
νi=0

∫ 1

0
B2(xi)

∂2f (xi + νi)

∂xi

dxi →
∞∑

�i=1

1

�2
i π

2

∫ ∞

0
cos(2π�ixi)

∂2f (xi)

∂xi

dxi (A.6)

where f (xi) is the exponential function in (A.4) with ν omitted, i.e.

f (xi) = exp
(−λ

√
n2 + x2

1 + · · · + x2
i + · · · + x2

m + r2
)
. (A.7)

The function f has the following properties:

lim
xi→0

∂f (xi)

∂xi

= 0, lim
xi→∞

∂f (xi)

∂xi

= 0, lim
xi→∞ f (xi) = 0. (A.8)

After integrating by parts twice and using the above properties of f , (A.6) reduces to∫ ∞

0
cos(2π�ixi)

∂2f (xi)

∂xi

dxi = −4π2�2
i

∫ ∞

0
cos(2π�ixi)f (xi)

and
∞∑

ν=0

∫ 1

0
B2(x)

∂2f (x + ν)

∂x
dx → −4

∞∑
�=1

∫ ∞

0
cos(2π�x)f (x) dx. (A.9)

Substituting (A.9) into equation (A.4) yields

Rj(q, λ) =
j−q∑
m=1

∞∑
n=1

∞∑
�1,...,m=1

4m+1

(
j − q

m

)
π

j−m

2



(

j−m

2

) ∫ ∞

0

m∏
i=1

cos(2π�ixi)

× exp
(−λ

√
n2 + x2

1 + · · · + x2
m + r2

)
dx1 · · · dxmrj−m−1 dr. (A.10)

We can reduce expression (A.10) to sums over the modified Bessel function Kj+1
2

by applying
sequentially the following set of three integrals [52]:

(I)
∫ ∞

0
cos(γ x) e−λ

√
b2+x2

dx = λb√
λ2 + γ 2

K−1
(
b
√

λ2 + γ 2
)

(II)
∫ ∞

0
(x2 + b2)∓

1
2 νKν

(
a
√

x2 + b2
)

cos(cx) =
(π

2

)1/2
a∓νb

1
2 ∓ν(a2 + c2)±

1
2 ν− 1

4

K±ν− 1
2

(
b
√

a2 + c2
)
.

(III)
∫ ∞

0
Kν

(
α
√

z2 + x2
) x2µ+1

(z2 + x2)ν/2
dx = 2µ
(µ + 1)

αµ+1zν−µ−1
Kν−µ−1(αz).

Integral I is applied once and converts the exponential and one cosine into the modified Bessel
function K−1, i.e.∫ ∞

0
cos(2π�1x1) e−λ

√
b2+x2

1 dx1 = λb√
λ2 + 4π2�2

1

K−1
(
b

√
λ2 + 4π2�2

1

)
(A.11)
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where b ≡
√

x2
2 + · · · + x2

m + n2 + r2. We now make repeated application of integral II for
the remaining x’s that appear in the definition of b. The subscript of the Bessel function is
therefore decreased by 1/2 each time. Since there are m − 1 x-integrals to perform, and we
start with K−1, this yields the Bessel function K −m−1

2
, i.e.∫ ∞

0

λ√
λ2 + 4π2�2

1

m∏
i=2

cos(2π�ixi)bK−1
(
b

√
λ2 + 4π2�2

1

)
dx2, . . . , dxm

= λ(n2 + r2)
m+1

4

π2m
(

λ2

4π2 + �2
1 + · · · + �2

m

) m+1
4

K −m−1
2

(
2π

√
n2 + r2

√
λ2

4π2
+ �2

1 + · · · + �2
m

)

(A.12)

We now apply integral III to perform the integration over r, i.e.∫ ∞

0

λπ−12−m(n2 + r2)
m+1

4(
λ2

4π2 + �2
1 + · · · + �2

m

) m+1
4

K −m−1
2

(
2π

√
n2 + r2

√
λ2

4π2
+ �2

1 + · · · + �2
m

)
rj−m−1dr

= λ

π2m+1



(

j−m

2

)
π

j−m

2

n
j+1

2 Kj+1
2

(
2πn

√
λ2

4π2 + �2
1 + · · · + �2

m

)
(

λ2

4π2 + �2
1 + · · · + �2

m

) j+1
4

. (A.13)

The integrals over x and r appearing in (A.10) can now be replaced by (A.13) yielding

Rj(q, λ) = λ

π

j−q∑
m=1

2m+1

(
j − q

m

) ∞∑
n=1

∞∑
�1,...,m=1

n
j+1

2 Kj+1
2

(
2πn

√
λ2

4π2 + �2
1 + · · · + �2

m

)
(

λ2

4π2 + �2
1 + · · · + �2

m

) j+1
4

. (A.14)

Finally, by taking the derivative of Rj(q, λ) with respect to λ and taking the limit as λ → 0
yields our desired final result for the remainder Rj(q):

Rj(q) ≡ lim
λ→0

∂λRj (q, λ)

= 1

π

j−q∑
m=1

2m+1

(
j − q

m

) ∞∑
n=1

∞∑
�1,...,m=1

n
j+1

2 Kj+1
2

(
2πn

√
�2

1 + · · · + �2
m

)
(
�2

1 + · · · + �2
m

) j+1
4

. (A.15)

Our final expression (A.15) for Rj(q) is excellent for numerical calculations because it
converges very quickly (exponentially fast). The sums to infinity are formalities as one
can reach an accuracy of eight to ten digits by summing fewer than nine numbers in each sum
for j up to 10.

Appendix B. Casimir energy in rectangular cavities with arbitrary lengths

One can generalize the multidimensional cut-off method used in section 2 to obtain Casimir
energy formulae for arbitrary lengths in a d-dimensional rectangular cavity. Our analysis will
naturally be brief since it follows closely that of section 2 and many results from that section
can be applied here. The best way to read this appendix is therefore to have section 2 and
appendix A in hand for immediate reference.

The quantized frequencies ω for periodic (p), Neumann (N) and Dirichlet (D) conditions
are now given by

ωp = 2πv

(
n2

1

L2
1

+ · · · +
n2

d

L2
d

)1/2

, ωN,D = πv

(
n2

1

L2
1

+ · · · +
n2

d

L2
d

)1/2

, (B.1)
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where the lengths range from L1 to Ld . The regularized vacuum energy for periodic boundary
conditions is then given by a similar form to (8), i.e.

Ereg
p (λ) = −πv∂λ

∞∑
ni=−∞
i=1,...,d

e
−λ

√
n2

1
L2

1
+···+ n2

d

L2
d = −πv∂λ


1 +

∞∑′

n1=−∞
e
−λ

√
n2

1
L2

1 +
∞∑′

n2=−∞

∞∑
n1=−∞

× e
−λ

√
n2

1
L2

1
+

n2
2

L2
2 + · · · +

∞∑′

nd=−∞

∞∑
ni=−∞

i=1,...,d−1

e
−λ

√
n2

1
L2

1
+···+ n2

d

L2
d




= −πv

d−1∑
j=0

∂λ	j (λ), (B.2)

where

	j(λ) ≡
∞∑′

n=−∞

∞∑
ni=−∞
i=1,...,j

e
−λ

√
n2

L2
j+1

+
n2

1
L2

1
+···+ n2

j

L2
j . (B.3)

As in (12), we obtain via the Euler–Maclaurin formula that
∞∑

ni=−∞
f (ni) =

∫ ∞

−∞
f (x) dx − R. (B.4)

R is given by expression (A.9) obtained in appendix A:

R =
∞∑

ν=0

∫ 1

0
B2(x)

∂2f (x + ν)

∂x
dx

= −4
∞∑

�=1

∫ ∞

0
cos(2π�x)f (x) dx

= −2
∞∑′

�=−∞

∫ ∞

0
cos(2π�x)f (x) dx, (B.5)

where we used f (x) = f (−x) for the function we are considering. Then (B.4) reduces to
∞∑

ni=−∞
f (ni) = 2

∞∑
�=−∞

∫ ∞

0
cos(2π�x)f (x) dx, (B.6)

where � = 0 is now included. Therefore the j -dimensional sum appearing in (B.3) for 	j(λ)

can be obtained by repeated application of (B.6). What appears in the regularized energy (B.2)
is the derivative ∂λ	j (λ):

∂λ	j (λ) = ∂λ

∞∑′

n=−∞

∞∑
ni=−∞
i=1,...,j

e
−λ

√
n2

L2
j+1

+
n2

1
L2

1
+···+ n2

j

L2
j

= ∂λ

∞∑′

n=−∞
2j

∞∑
li=−∞
i=1,...,j

∫ ∞

0
cos(2π�1x1) . . . cos(2π�jxj ) e

−λ

√
n2

L2
j+1

+
x2

1
L2

1
+···+ x2

j

L2
j dx1 . . . dxj

= L1 . . . Lj

(Lj+1)j+1

(
2j+1∂λ

∞∑
n=1

∫ ∞

0
e−λ

√
n2+x2

1 +···+x2
j dx1 . . . dxj + ∂λRj (λ)

)
, (B.7)
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where the sum over all �’s was divided into two cases leading to the two terms in the brackets
of (B.7). The first term occurs when all �’s are equal to zero. The second term is for all other
�’s and corresponds to the remainder :

∂λRj (λ) ≡ 2j+1∂λ

∞∑
n=1

∞∑′

li=−∞
i=1,...,j

∫ ∞

0
cos

(
2π�1

L1

Lj+1
x1

)

× · · · cos

(
2π�j

Lj

Lj+1
xj

)
e−λ

√
n2+x2

1 +···+x2
j dx1 · · · dxj , (B.8)

where the prime over the multiple sum excludes only the case when all �’s are equal to zero.
The multiple integral over j cosines can be obtained directly from (A.12) in appendix A by
the following substitutions: m → j, �i → �iLi/Lj+1 and n2 + r2 → n2, i.e.

∂λRj (λ) = ∂λ

∞∑
n=1

∞∑′

li=−∞
i=1,...,j

2λ(nLj+1)
j+1

2 Kj+1
2

(
2πn
Lj+1

√
(λLj+1)2

4π2 + (�1L1)2 + · · · +
(
�2

jLj

)2)
π

( (λLj+1)2

4π2 + (�1L1)2 + · · · + (�jLj )2
) j+1

4

. (B.9)

The Casimir energy is proportional to the finite part of (B.7) as λ → 0. The first term in
brackets in (B.7) is identical to the derivative of the first term in 	j(q, λ) given by (15).
Therefore the result (28) from section 2 is directly applicable, i.e.

lim
λ→0

∂λ	
finite
j (λ) = L1 · · ·Lj

(Lj+1)j+1

(



(
j + 2

2

)
π

−j−4
2 ζ(j + 2) + Rj

)
, (B.10)

where the remainder term is given by

Rj ≡ lim
λ→0

∂λRj (λ)

=
∞∑

n=1

∞∑′

li=−∞
i=1,...,j

2(nLj+1)
j+1

2

π [(�1L1)2 + · · · + (�jLj )2]
j+1

4

Kj+1
2

(
2πn

Lj+1

√
(�1L1)2 + · · · + (�jLj )2

)
.

(B.11)

Our final Casimir energy expression for periodic boundary conditions is then given by

Ep
L1 ···Ld

(d) = −πv

d−1∑
j=0

lim
λ→0

∂λ	
finite
j (λ)

= −πv

d−1∑
j=0

L1 · · ·Lj

(Lj+1)j+1

(



(
j + 2

2

)
π

−j−4
2 ζ(j + 2) + Rj

)

= v

( −π

6L1
− L1

L2
2

ζ(3)

2π
− L1L2

L3
3

π2

90
+ · · · − R1

πL1

L2
2

− R2
πL1L2

L3
3

+ · · ·
)

(B.12)

where the remainder Rj is given by (B.11) (note that Rj is zero when j = 0). Equation (B.12)
is a highly compact way to express the Casimir energy for arbitrary lengths. As in section 2
it is split into two terms: an analytical part and a remainder. The same physical interpretation
follows: the analytical part is a sum of parallel plate terms. Equation (B.12) is valid for
any lengths and we know the result should be invariant under a permutation of the lengths.
However, the two terms separately are not invariant, only their sum. We naturally want to
label the lengths such that the remainder term lives up to its name. This can be accomplished
if the largest length is labelled L1, the next largest length L2, i.e. L1 � L2 � L3 · · ·.
Then the Bessel function decreases exponentially fast and the remainder is small. If q
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dimensions are large and d −q dimensions have equal length L, equation (B.12) for Ep(d) and
equation (B.11) for the remainder Rj reduce to the results of section 2, i.e. Ep(q, d) given by
(30) and Rj(q, d) given by (29) respectively.

The Neumann (N) and Dirichlet (D) cases can be obtained via simple permutations of the
periodic case. The operator relations for Neumann and Dirichlet are

∑∞
0 → 1

2

(∑∞
−∞ +1

)
and∑∞

1 → 1
2

(∑∞
−∞ −1

)
respectively. Applying the operator d times while keeping each sum

distinct because of different lengths and multiplying the final result by 1
2 yields the Neumann

and Dirichlet energies

EN,D = 1

2d+1

d∑
m=1

∑
(k1,...,km)

(±1)d+mEp
k1 ...km

(m), (B.13)

where the (+) is for Neumann and the (−) for Dirichlet. The sum is over all sets (k1, . . . , km)

with k1 < k2 < · · · < km (the k’s run from 1 to d). Ep
k1 ···km

(m) is the periodic energy (B.12)
replacing d by m and L1 by Lk1 , L2 by Lk2 , etc.

Appendix C. Remainder term Rd(s) for Epstein zeta function

We derive in this appendix a convenient form for the remainder Rd(s) in terms of sums of
Bessel and gamma functions. We begin with the expression for the remainder Rd(s) given
by (62)

Rd(s) ≡
∞∑

n1,...,nd−1=1

−1

2

∞∑
ν=0

∫ 1

0
B2(x)

∂2

∂x2

1

((x + ν)2 + n2)s
dx, (C.1)

where

n2 ≡ n2
1 + · · · + n2

d−1. (C.2)

We now follow similar procedures as those employed in appendix A for Rj(q). To avoid being
repetitive, we skim through details already discussed in appendix A.

The term x + ν is continuous and runs from 0 to ∞. We drop the sum over ν, replace
x + ν by x and integrate from 0 to ∞ instead of 0 to 1. We replace B2(x) = x2 − x + 1/6 by
its Fourier expansion (A.5), i.e.

x2 − x + 1/6 =
∞∑

�=1

cos(2π�x)

�2π2
. (C.3)

We can therefore make the following replacement in (C.1):
∞∑

ν=0

∫ 1

0
B2(x)

∂2f (x + ν)

∂x
dx →

∞∑
�=1

1

�2π2

∫ ∞

0
cos(2π�x)

∂2f (x)

∂x
dx (C.4)

where f (x) is the function in (C.1) with ν omitted, i.e.

f (x) = 1

(x2 + n2)s
(C.5)

The function f (x) has the following properties:

lim
x→0

∂f (x)

∂x
= 0, lim

x→∞
∂f (x)

∂x
= 0, lim

x→∞ f (x) = 0. (C.6)

With the above properties of f , (C.4) reduces to the same expression (A.9) obtained in
appendix A:

∞∑
ν=0

∫ 1

0
B2(x)

∂2f (x + ν)

∂x
dx → −4

∞∑
�=1

∫ ∞

0
cos(2π�x)f (x) dx. (C.7)
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After substituting (C.7) into (C.1) we obtain Rd(s) in the following form:

Rd(s) =
∞∑

n1,...,nd−1=1

∞∑
�=1

∫ ∞

0
2 cos(2π�x)

1

(x2 + n2)s
dx. (C.8)

The integral can be expressed in terms of Bessel functions, i.e.∫ ∞

0
2 cos(2π�x)

1

(x2 + n2)s
dx = 2√

π

(1 − s) sin(πs)Ks−1/2(2π�n)

(
π�

n

)s−1/2

. (C.9)

Our final expression for Rd(s) is then

Rd(s) =
∞∑

n1,...,nd−1=1

∞∑
�=1

2√
π


(1 − s) sin(πs)Ks−1/2(2π�n)

(
π�

n

)s−1/2

, (C.10)

where n ≡
√

n2
1 + · · · + n2

d−1 .
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